

Rare Dermatology

Orphan Disease Drug Development Challenges

Opportunities &

Greg Licholai, MD

Yale University

6 January **2019**

Disclosures and affiliations

- Adjunct faculty at Yale University School of Management & Co-director Yale Center for Digital Health
- Chief Medical Officer & Medical Information Officer at PRA Health Sciences
- Former President and Chief Medical Officer at Castle Creek Pharmaceuticals

Rare dermatological diseases are underrepresented in drug development and pharmaceutical company sponsored trials

Today's themes

- Mismatch exists despite significant success in R&D and investment in other areas of rare disease research
- Only about one tenth of non-oncology rare dermatological conditions are being clinically investigated, mainly by academic centers
- Substantive, important research into mechanism and novel approaches in dermatology is taking place mostly in academia

Introduction: Why should we care about dermatology rare diseases?

How many people are affected by rare disease in the U.S.?

There are approximately **7,000** different types of rare diseases and disorders.

Approximately **30 million people** in the U.S. are living with a rare disease – That's equivalent to **1 in 10 Americans**.

80% of all rare disease patients are affected by approximately 350 rare diseases.

Source: RARE Diseases: Facts and Statistics. Global Genes. Retrieved from https://globalgenes.org/rare-diseases-facts-statistics/

Some history and definitions

What led to the Orphan Drug Act (ODA)?

- Need for **financial incentives for pharmaceutical companies** to develop promising orphan drugs.
- Companies concerned about revenue generation compared to cost of orphan drug R&D due to small patient populations.
 - Average cost of drug research and development: \$1 to 2 billion

History of events in rare disease

1979

FDA/NIH task force issues report highlighting the need for further development of rare disease therapies (those of "limited commercial value").

1983

Orphan Drug Act (ODA) is passed; NORD officially founded with Abbey Meyers named president.

1985

Congress amends
ODA so that currently
approved products
can apply for orphan
approval and gain
extended market
protection.

1997

FDA Modernization Act is approved to allow for the following expedited approval processes:

- Fast Track
- Accelerated Approval
- Priority Review
- Breakthrough Therapy Designation

2016

Nine of the 22 novel drugs approved (41%) were approved to treat orphan diseases.

1979-80

Patient advocates form coalition (now known as NORD) to advocate for the development of rare disease therapies.

1984

ODA amended to define rare disease as any disease affecting fewer than 200,000 people in the U.S.

1992

Prescription Drug User Fee Act is passed; orphan drugs are exempt from annual product and establishment fees.

2003

Pediatrics Research Equity Act excuses orphan drug companies from the requirement to test their drugs in pediatric populations.

June 2017

FDA commissioner Scott Gottlieb developed the Orphan Drug Modernization Plan ("90 in 90" plan).

Source: MajorMilestones: Driving Progress on Behalf of Rare Disease Patients. NORD.

Public Law 99-91 - Aug. 15, 1985. An Act. To amend the orphandrug provisions of the Federal Food, Drug, and Cosmetic Act and related laws. Public Law 99-91, 99th Congress.

Incentives offered by Orphan Drug designation

- 7 years' market exclusivity
- Tax credits for 50% of clinical trial costs
- PDUFA fee exemption
 - Requiring clinical data \$2,335,200
 - Not requiring clinical data \$1,167,600
 - Supplements requiring clinical data \$1,167,600
- Federal grants to help fund clinical trials
- Annual grant funding to defray the costs of qualified clinical testing expenses (\$14 million total for 2008)

Source: Hyde R, Dobrovolny D. Orphan Drug Pricing and Payer Management in the United States: Are We Approaching the Tipping Point? Am Health Drug Benefits. 2010 Jan-Feb; 3(1): 15–23.

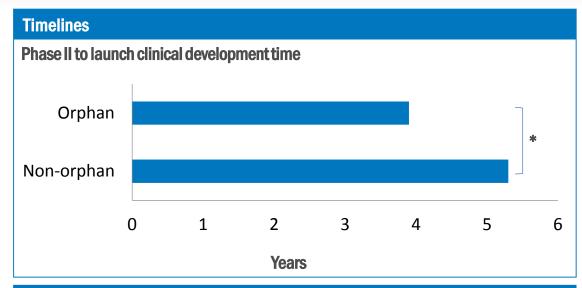
Growth drivers rare disease development

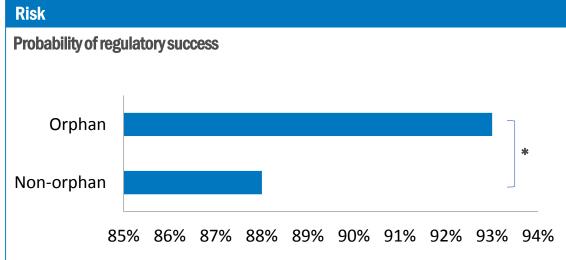
Pharma shift from "blockbusters" to "niche busters"

Source: Kumar Kakkar A, Dahiya N. The evolving drug development landscape: from blockbusters to niche busters in the orphan drug space. Drug Dev Res. 2014 Jun; 75(4):231-4. doi: 10.1002/ddr.21176.

Common wisdom*

Orphan disease drug development is ...




* among pharmaceutical executives

R&D driver: somewhat faster

Costs

 Phase III development of orphan drugs cost about 25% less compared to non-orphan drugs.

Flexibility

- Protocol assistance guidance
- ODA allows for flexibility and exercise of scientific judgment in kinds and quantity of data required for a particular drug for an indication.

Source: Meekings, Kiran M.; Williams, Corey S.M.; Arrowsmith, John E. Orphandrug development an economically viable strategy for biopharma R&D. (2012). Drug Discovery Today

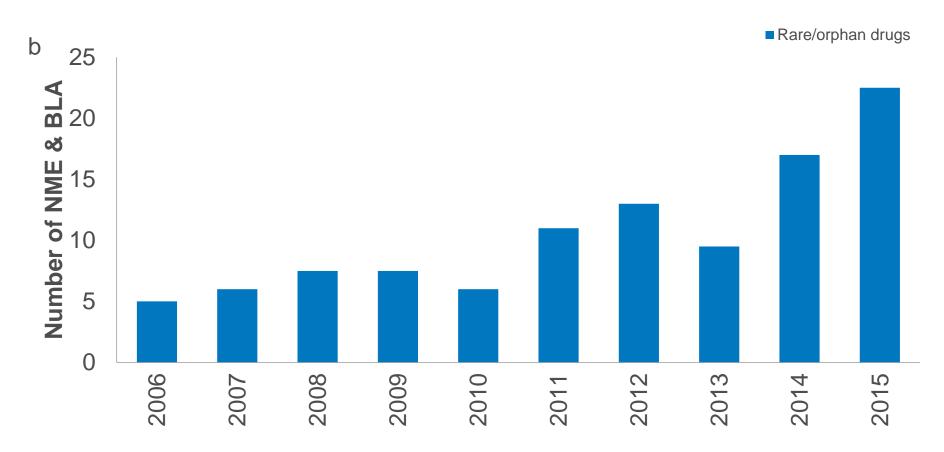
CDER NME/NBE Approvals 2009-2013			
	All	Rare	Common
≥2 adequate and well-controlled trials controlled trials	58%	33%	70%
1 Trial + Supporting Evidence	38%	60%	28%
Other	4%	7%	2%
Total approvals	159	52	107

Source: Pariser, Anne. (2014). Rare Disease and Clinical Trials. U.S. Food and Drug Administration.

Rare Pediatric Review Voucher

- Rare Pediatric Review Voucher
 - Voucher can be redeemed by recipient or sold to another company.
 - For example: BioMarin's voucher (first ever to be sold) was purchased for \$67M.
 - o In August 2015, AbbVie paid \$350M for a voucher originally awarded to United Therapeutics.

How the Priority Review Voucher System Works Company receives or purchases a priority review youcher

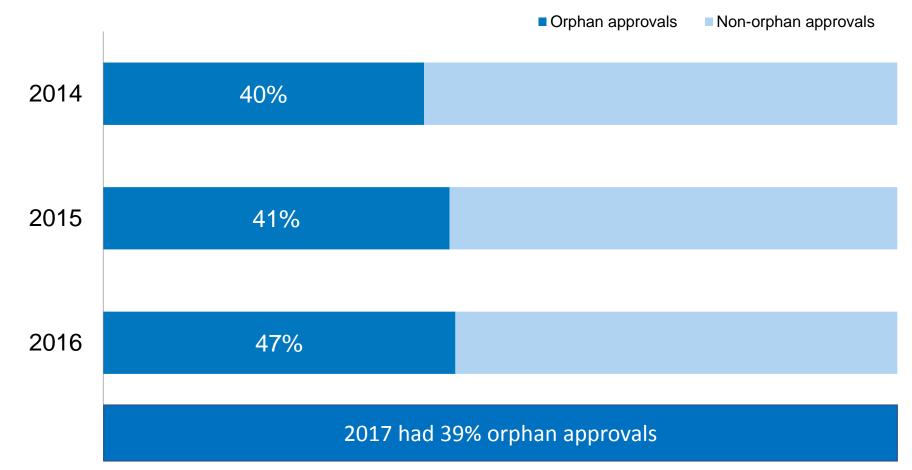

Company informs
FDA of intent to use
voucher on upcoming
submission

FDA accepts voucher, agrees to review drug within six months

Source: Gaffney, Alexander; Mezher, Michael; Brennan, Zachary. (2017). Regulatory Explainer: Everything You Need to Know About FDA's Priority Review Vouchers. Regulatory Affairs Professionals Society.

Increase in rare disease approvals

Number of new molecular entities (NMEs) and Biologics License Applications (BLAs) approved by the Center for Drug Evaluation and Research (CDER) from 2006 to 2015



Source: Data are from the FDA website

Rare disease approvals are nearly half of all new drugs

- Before 1983, fewer than 10 treatments for rare diseases were approved.
- After 1983, FDA has approved more than 500 orphan drugs.

Source: Medicines in Development for Rare Diseases: A Report on Orphan Drugs in the Pipeline. (2016). PhRMA.

Rare dermatology development status

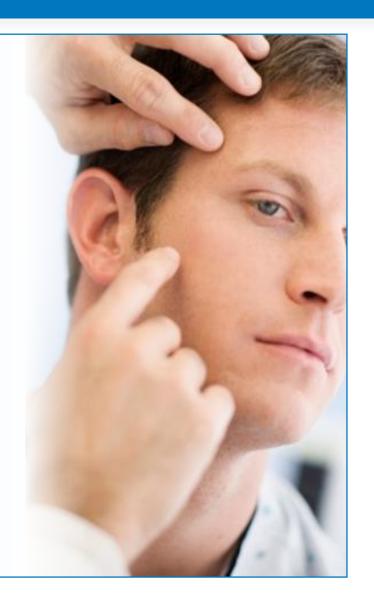
Long list of rare skin disease ...

NIH's genetic and rare disease information center lists:

597

dermatologic diseases or genetic disorders with cutaneous manifestation

Source: NIH genetic and rare disease website; genodermatoses network website


... relatively few rare derm products in development ...

Designation	Product	Status
Behcet's	Otezla (apremilast)	Phase III
Melanoma	Binimetinib	Phase III
Melanoma	Cavatak	Phase II
Melanoma	LN-144	Phase II
Erythropoietic porphyria	Scenesse (afamelanotide)	Phase III
Pernphiqus vulgaris	Rituxan (rituximab)	Phase II
Epidermolysis bullosa	Diacerin	Phase II/III
Congenital ichthyoses	PAT-001 (isotretinoin)	Phase I
Pachyonychia congenita	TD-101	Phase II
Diffuse systemic sclerosis	ARG 201	Phase II
Systemic sclerosis	Adempas (riociguat))	Phase II
Systemic sclerosis	Actemra (tocilizumab)	Phase III
Systemic sclerosis Source: Pharma medicines in development for rare disease (2016)	Resunab (ajulemic acid)	Phase II

... and few orphan drugs approved in dermatology

Skin diseases with FDA approved therapies:

- Squamous Cell Carcinoma of Head and Neck: Erbitux (cetuximab)
- Melanoma: Taflinar (dabrafenib)
- Melanoma: Opdivo (nivolumab)
- Melanoma: Imlygic (tamilogene)
- Melanoma: Mekinist (trametinib)
- Erythema nodosum leprosum: Tholomid (Thalomid)
- Dermatofibrosarcoma protuberans: Gleevec (imatinib)
- Acne Rosacea: Metronidizole (Flagyl)
- Chronic granulomatous disease: Actimmune (interferon gamma-1b)
- Chronic Infantile Neurological Cutaneous Articular syndrome: Arcalyst (rilonacept) and Kineret (anakinra)
- Merkel cell carcinoma: Bavencio (avelumab)
- Behcet's disease: Humira (adalimumab)
- Pemphigus: Rituxan (Rituximab)

Source: Skin Diseases. Genetic and Rare Diseases Information Center (GARD); FDA website

Rare dermatology development challenges

FDA considerations in R&D for orphan drugs

Clinical development based on strict guidance and expectations

- Regulatory agencies approve drugs based on how patients feel, function or survive
- Requirements are based on clinical or surrogate evidence of substantial benefits that outweigh risks of therapy
- Treatments must be deemed to be clinically meaningful, which can be difficult to reach expert consensus

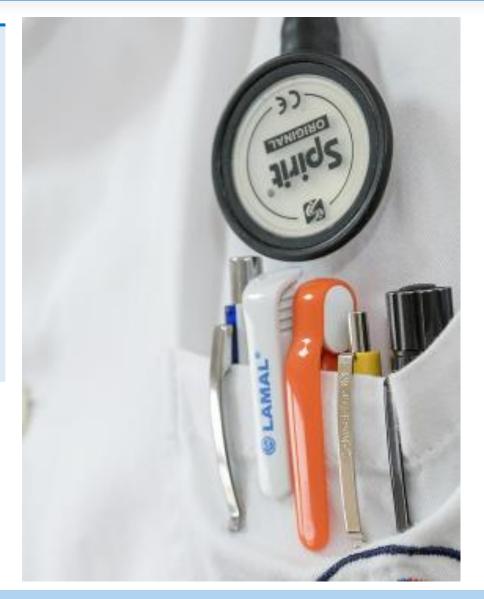
Need for consensus on relevant clinical endpoints

Challenges

- Adequate or relevant clinical endpoints have not been widely adopted for approval in rare diseases
- Substantial patient to patient variability with small populations lack statistical significance
- Regulators tend to rely on familiar scales and instruments
- Instruments not validated with accompanying clinical trials
- Regulators expect visual assessment, not photographic record

Regulatory standards

- Direct outcome measures of symptoms, functional status on survival (not signs cardinal signs of disease)
 - o Examples: PFS, PGA, PRO, QoL, Complete wound closure


Clinical standards

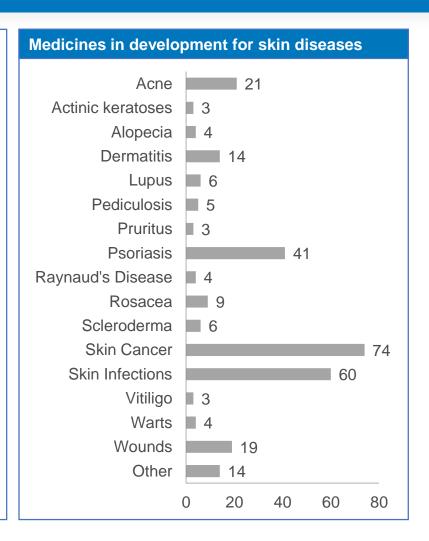
- Based on clinical practice, expert assessment and practical approach to patients with rare diseases
 - o Examples: EBDASI, IscorEB
- Assumption of clinical meaningfulness

Need for companion diagnostics and biological markers

99

- Limited clinical use of biological or laboratory markers based on disease mechanism of action, including potential biomarkers that correlate to extent and progress of disease
- Need defined biomarkers to determine molecular targets and to develop optimal therapies; may help facilitate clinical trial design/measurements

Emerging landscape in dermatology rare diseases


Emerging landscape for targeted therapies in dermatology

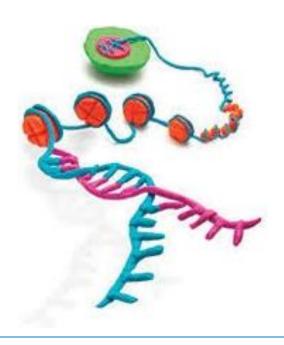
Drivers changing dermatology drug development landscape

- Understanding underlying defects
- Biological pathways
- Identification of disease genes via NGS

Techniques for innovative medicine

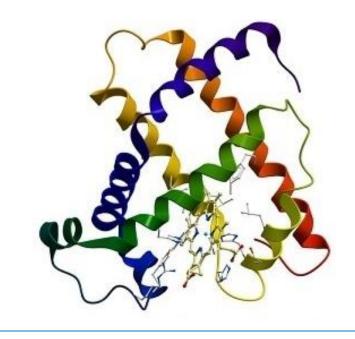
- Gene modification strategies →siRNA, mRNA, gene transfer
- Gene editing → TALENS, CRISPR/Cas9
- Protein therapy
- Cell therapy
- Approaches
 - Development of new therapies
 - Repurposing existing therapies

Source: Some medicines are listed in more than one category


Titeux M, Izmiryan A, Hovnanian A. The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol. 2017 May;137(5):e123-e129. doi: 10.1016/j.jid.2016.08.038.

Biopharmaceutical Research Companies are Developing Nearly 300 Medicines to Treat Diseases of the Skin. Medicines for Development in Skin Diseases 2011 Report. PhRMA.

New therapeutic targets in dermatology...


Functional genomics & epigenetics

Advanced ability to detect genetic disease signatures

Integrated proteomics

Better understanding of protein behavior, post-translational modifications, proteinprotein modification, based on advanced techniques in mass spectrometry

Source: Titeux M, Izmiryan A, Hovnanian A. The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol. 2017 May;137(5):e123-e129. doi: 10.1016/j.jid.2016.08.038.

...Leading to new therapies in early stage development

Gene Therapy

- Ex-vivo gene therapy for JEB and RDEB
- Transplantation of genetically modified epithelial sheets made from autologous keratinocytes corrected with B3 chain of laminin 332 or COL7A1 cDNA

Cell Therapies

- Mesenchymal stromal cells (MSC), induced pluripotent stem cells (iPSC), for RDEB
- Bone marrow-derived transplantation, Mesenchymal stromal cells (MSC), induced pluripotent stem cells (iPSC), revertant cells for dyskeratosis congenita

Biological Therapies

- Exon skipping, anti-sense for RDEB
- siRNA intra-lesion injection for pachyonychia congenita

Protein Replacement

- Recombinant ectodysplasin protein for anhidrotic ectodermal dysplasia
- Recombinant type VII collagen for RDEB
- · Recombinant trans-glutaminase 1 for lamellar lchthyosis

Source: Titeux M, Izmiryan A, Hovnanian A. The Molecular Revolution in Cutaneous Biology: Emerging Landscape in Genomic Dermatology: New Mechanistic Ideas, Gene Editing, and Therapeutic Breakthroughs. J Invest Dermatol. 2017 May;137(5):e123-e129. doi: 10.1016/j.jid.2016.08.038.

Considerations in drug pricing for orphan diseases

Value proposition must be clearly defined

- Burden of disease
- Clinical impact
- Cost effectiveness
- Medical solution

Three pricing models:

- Value-added pricing is based on replacement or enhancement of current treatments in the same category.
- Cost plus pricing based on its development costs and return on investment before new or generic drugs become available.
- Comparable value pricing compares the characteristics or benefits of drugs in different clinical categories.

Source: Philippidis, Alex. (2014). Genetic Engineering & Biotechnology News.

Summary

Where were we?

 Before ODA, fewer than 10 treatments for rare diseases were approved. Now FDA has approved more than 500 orphan drugs.

Where are we now?

 Incentives being created to drive R&D of orphan drugs: fast track, priority review, BTD, accelerated approval, tax credits, etc.

Where are we going?

- About 95% of rare diseases still lack FDA approved drug treatments.
- Need for more studies on natural history and underlying biological processes that may lead to new promising therapies in dermatology

Acknowledgements

- Afton Chavez, MD, Department of Dermatology, Alpert Medical School of Brown University
- Dedee F. Murrell, MA, BMBCh, MD, FACD, FRCP(Edin), Department of Dermatology, St George Hospital, Sydney and the University of New South Wales, Australia