

Costimulatory T-cell engagement by PRS-343, a CD137 (4-1BB)/HER2 bispecific, leads to tumor growth inhibition and tumor-localized CD8(+) T cell expansion in a humanized mouse model

Marlon J. Hinner¹, Rachida-Siham Bel Aiba¹, Corinna Schlosser¹, Thomas Jaquin¹, Andrea Allersdorfer¹, Sven Berger¹, Alexander Wiedenmann¹, Gabriele Matschiner¹, Julia Schüler², Ulrich Moebius¹, Christine Rothe¹, Shane A. Olwill¹

¹Pieris Pharmaceuticals, Inc., 255 State Street, Boston, Massachusetts; ²Oncotest GmbH, Am Flughafen 12, Freiburg, Germany.

Abstract

Background. 4-1BB (CD137) is a potent costimulatory immunoreceptor and a highly promising target for immunostimulatory cancer therapy. Conventional 4-1BB-targeting antibodies, however, suffer from a lack of tumor-selective activity, which may lead to peripheral toxicity and reduce the available therapeutic window. To develop a therapeutic that facilitates a 4-1BB-based activation of T cells that is both tumor-target driven and tumor localized, we have generated PRS-343, a 4-1BB/HER2 bispecific. PRS-343 was made by genetic fusion of a 4-1BB-binding Anticalin® to modified trastuzumab. We have shown previously that PRS-343 targets 4-1BB and HER2 in a bispecific manner and efficiently activates T cells ex vivo in the presence of HER2positive cells. Here, we present in vivo proof of concept data and tumor infiltrating lymphocyte (TIL) phenotyping.

Results. We tested PRS-343 efficacy in a humanized mouse model in immunocompromised mice using the SK-OV-3 cell line as a HER2-positive xenograft. The data indicate that PRS-343 displays dual activity based on monospecific HER2-targeting and bispecific, tumor-localized costimulation of 4-1BB. Tumor response was accompanied by a significantly higher frequency of hCD45(+) TIL's as determined by immunohistochemistry (IHC). TIL phenotyping indicated that the rise in TIL frequency was due to an expansion of CD3(+)CD8(+) T cells. Interestingly, we observed neither tumor growth inhibition nor an increase in human TIL's with the anti-4-1BB benchmark. In contrast to PRS-343, the anti-4-1BB benchmark displayed an increased toxicity due to accelerated graft-versus-host-disease (GvHD). The accelerated GvHD correlated with CD8+ T cell expansion in the peripheral blood. The data therefore support the concept that tumor-localized costimulatory T cell activation by a bispecific such as PRS-343 may lead to higher efficacy and reduced systemic toxicity compared to conventional anti-4-1BB mAbs.

Conclusion. The positive functional ex vivo and in vivo data of PRS-343 as well as the excellent developability profile support investigation of its anti-cancer activity in clinica trials. A first-in-patient study is planned to commence in the first half of 2017.

Concept: tumor-specific and tumor-localized costimulatory activation of T cells

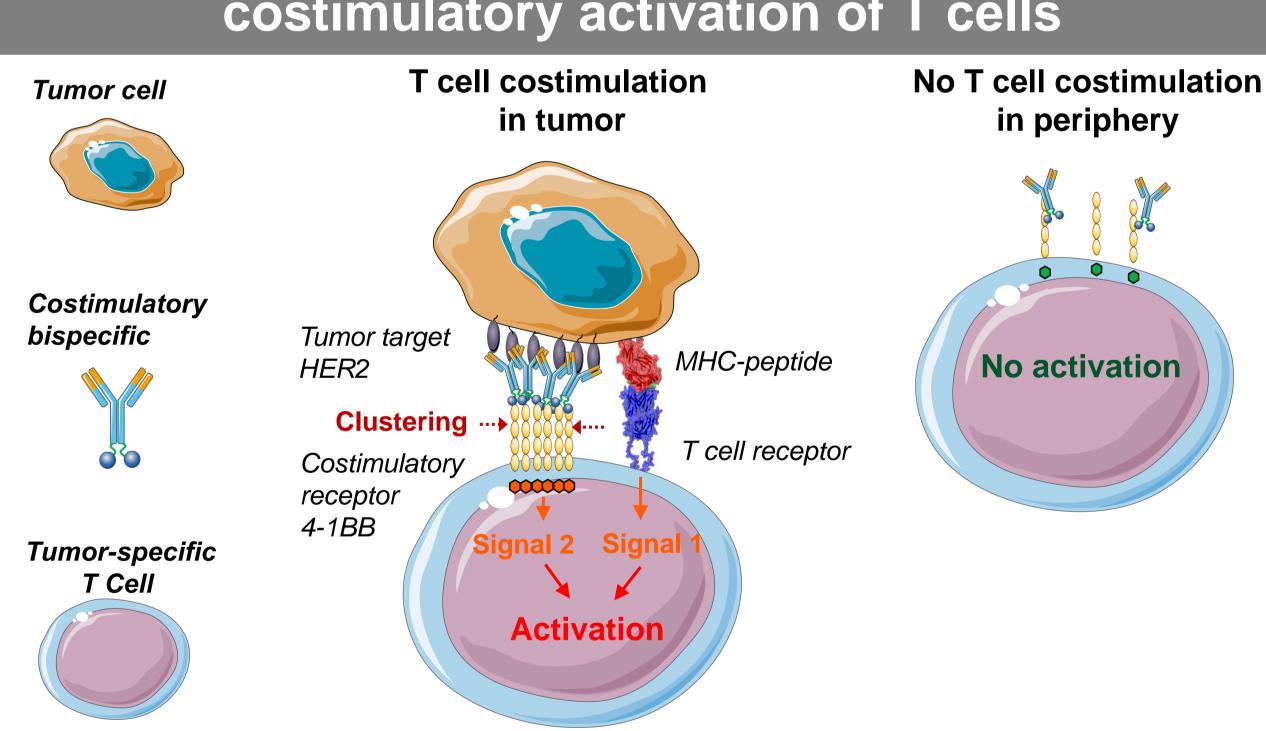


Figure 1. Concept of costimulatory T cell engagement by PRS-343: Within a patient's tumor, tumorspecific T cells are bridged with tumor cells by the costimulatory bispecific PRS-343 which simultaneously binds the tumor target HER2 and the immune receptor 4-1BB. The resulting clustering of 4-1BB provides a local co-activatory signal to the T cell, further enhancing its T cell receptor (TCR)-mediated activity and leading to tumor destruction. Toxic side effects are expected to be manageable, as PRS-343 does not induce clustering and activation of 4-1BB in the absence of target-positive cells, and healthy tissue is spared by tumor-costimulated T cells due to the absence of a primary, TCR-mediated signal.

Building block: Anticalin targeting 4-1BB

Discovery

 Phage display of lipocalin library against 4-1BB, followed by affinity maturation

Binding to 4-1BB

- $K_D = 2.3 \text{nM (SPR)}$
- EC50(FACS) = 5.9nMNon-competitive binding vs

4-1BBL

Biophysical properties 100% monomeric expression

- $T_M = 74^{\circ}C (DSC)$
- Fully stable after 1 week at 37°C ir PBS pH7.4, human plasma or mouse plasma

Functional activity

 Ex vivo activation of T cells when coated; no activation when in solution

PRS-343 was selected from four 4-1BB/HER2 bispecifics based on functionality

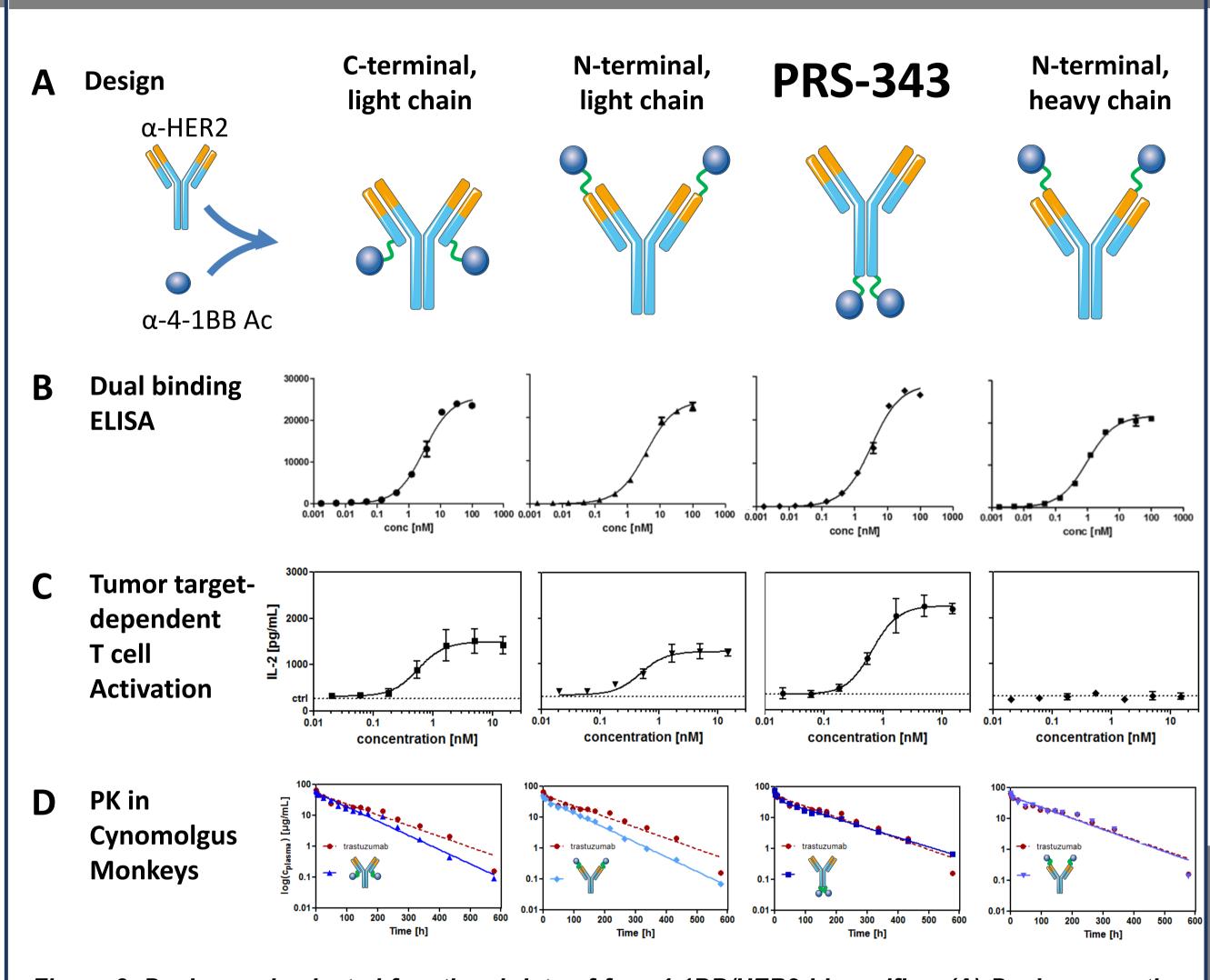
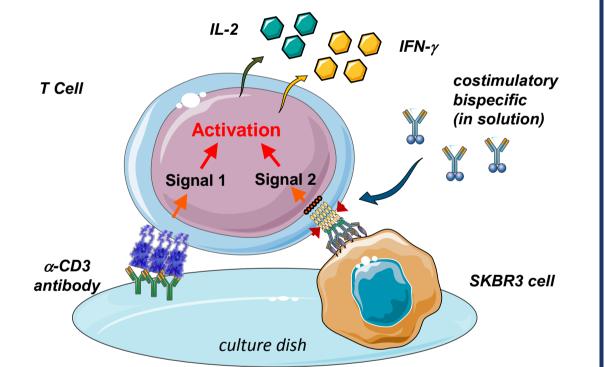
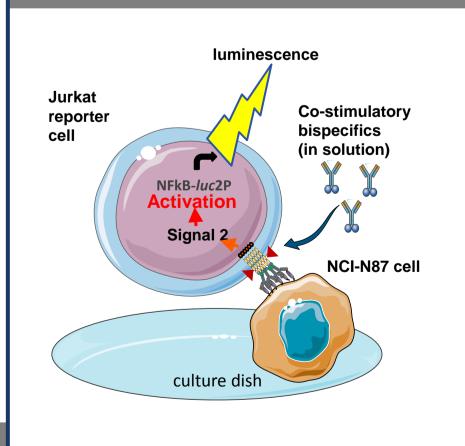




Figure 2. Design and selected functional data of four 4-1BB/HER2 bispecifics. (A) Design: genetic fusions of backbone-engineered trastuzumab to the anti-4-1BB Anticalin were generated to any of the four termini of the antibody. The IgG1 backbone of trastuzumab was exchanged for an engineered IgG4 backbone. (B) Dual binding: 4-1BB/HER2 bispecifics are capable of binding both targets at the same time according to Sandwich ELISA. (C) Ex vivo T cell activation: 4-1BB/HER2 bispecifics display different capabilities of eliciting IL-2 production by costimulatory engagement (see method description below). (D) Pharmacokinetics of PRS-343 compared to trastuzumab: male cynomolgus monkeys received test articles as an intravenous infusion at a dose of 3mg/kg. Drug levels were detected using Sandwich ELISA.

Brief methods ex vivo T cell activation. SKBR3 tumor cells were grown overnight on 96-well plates that had been precoated with anti-CD3 antibody. The next day, T cells purified from healthy donor PBMC were added to the wells together with the titrated 4-1BB/HER2 bispecific molecules (constructs A-D). After three days in culture, IL-2 and IFN-g levels in the culture supernatants were electrochemoluminescence

PRS-343 activates 4-1BB pathway only in presence of HER2-expressing cells

over-expressing 4-1BB

carrying a NF-кВ-Luciferase

reporter gene, were then added

to the plates together with the

titrated 4-1BB/HER2 bispecific

construct PRS-343 (A) or anti-4-

1BB benchmark mAb (B). After

incubation, the T cell reporter

luminescence. The impact of

4-1BB-targeting on 4-1BB

downstream signaling was also

investigated in the absence of

tumor cells at a single

concentration of 4-1BB agonists

signal was measured

- 4-1BB downstream signaling activation by the 4-1BB/HER2 bispecific drug candidate PRS-343 was investigated by an NF-κB-luciferase reporter assay PRS-343 strongly activated the 4-1BB pathway in the
- presence of HER2high NCI-N87 target cells; no activation occurred in the absence of NCI-N87 tumor cells An anti-4-1BB benchmark mAb activated the 4-1BB pathway both in the absence and presence of tumor

no tumor HER2high NCI-N87 **A** PRS-343 B Anti-4-1BB benchmark

Figure 3. Activation of the 4-1BB signaling pathway in Jurkat T cells was measured by an NF-kB-Luciferase reporter assay The luminescence signal was used as a relative measure of 4-1BB pathway activation. (A) PRS-343 drug candidate (solid line), negative control trastuzumab (light grey dashed line). (B)

Anti-4-1BB benchmark mAb.

PRS-343 induces T cell activation when tumor HER2 levels are high, but not at physiological levels

- T cell activation assays were performed using the HER2^{high} SKBR3 and BT474 cell lines and cancer cell lines with HER2 expression levels that are similar to healthy tissue, HepG2 and MCF7
- IL-2 production was determined as a measure of T cell activation
- PRS-343 selectively leads to activation of T cells with SKBR3 and BT474 cells
- Anti-4-1BB benchmark mAb leads to T cell activation with all cell lines

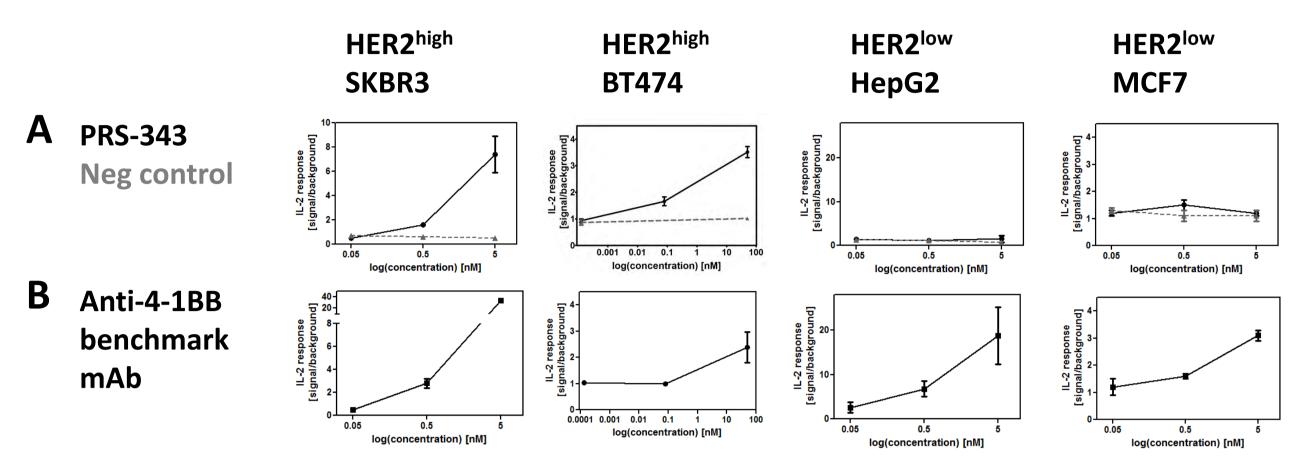


Figure 4. Relative IL-2 induction by 4-1BB-driven T-cell activation in the presence of highly HER2positive cells (SKBR3, BT474) and cell lines expressing HER2 at a level similar to that of healthy, HER2^{low} cells (HepG2, MCF7). (A) 4-1BB/HER2 bispecific (solid lines) and negative control trastuzumab (dotted lines). (B) Anti-4-1BB benchmark mAb. The experiments were performed as described for Figure 2. The plotted relative IL-2 response corresponds to the ratio of the responses obtained in the presence and in the absence ("background") of test articles.

Activity in humanized mouse model: PRS-343 leads to TGI and increased hCD45-positive cells in tumor

- Immuno-compromised mice engrafted with HER2-positive tumor cells (SK-OV-3) were injected with human PBMC and treated over 3 weeks with PRS-343 at four different doses
- Control molecules were IgG4 isotype, an anti-4-1BB benchmark antibody and trastuzumat with an IgG4 backbone (Tras-IgG4)
- Tumor IHC staining for the human lymphocyte marker CD45 shows a dose-dependent increase in the frequency of human TIL for PRS-343, but not for controls, suggesting successful tumor-localized T cell activation by PRS-343
- PRS-343 showed dose-dependent tumor growth inhibition (TGI) comparable to Tras-IgG4, indicating that TGI is dominated by HER2 antagonism in this model



Figure 5. PRS-343 activity in NOG mice engrafted with HER-2 positive SK-OV-3 cell line and human PBMC. NOG mice were subcutaneously (s.c.) injected with SK-OV-3 cells and tumors were allowed to grow to an average of 120mm³ prior to randomization into treatment groups (n=10). Mice were engrafted with fresh human PBMC intravenously (i.v.) into a tail vein and treatment commenced 1 hour later. Mice received 3 weekly intraperitoneal (i.p.) doses of treatment (4µg, 20µg, 100µg or 200µg) or controls. Tumor growth was recorded twice weekly. Tumors from up to six mice were harvested on day 20 post treatment (anti-4-1BB benchmark mAb: day 17) and assessed for infiltration of human T cells by immunohistochemistry. (A) Graphical overview. (B) Median of tumor growth. Data points that no longer represent the full group size of 10 mice are connected by dotted

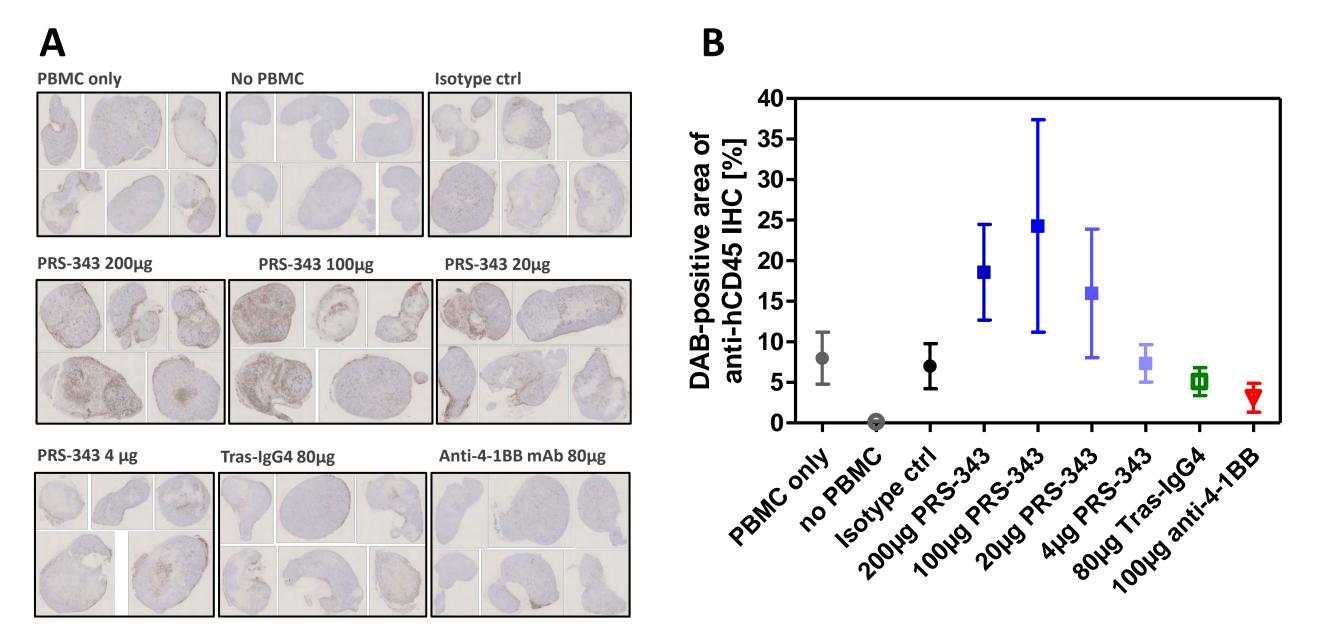


Figure 6. Immunohistochemistry of tumors after study end. (A) Sections of formalin-fixed and paraffin-embedded tumors (5 or 6 per group) were stained for human CD45. (B) The frequency of CD45⁺ cells was quantified by dedicated software. The data shows that PRS-343 induces a dosedependent increase in the frequency of human CD45+ cells in the tumor compared to negative controls, while monospecific antibodies targeting HER2 (Tras-IgG4) or 4-1BB lack this activity.

PRS-343 leads to an expansion of CD8+ T_{eff} cells in the tumor unlike 4-1BB mAb

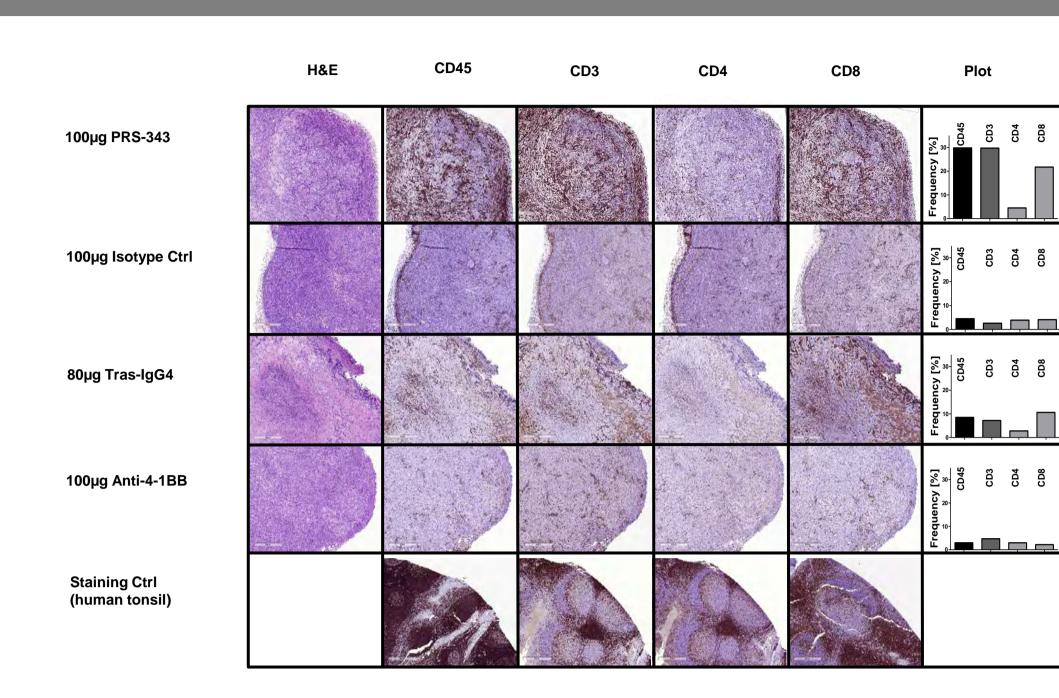
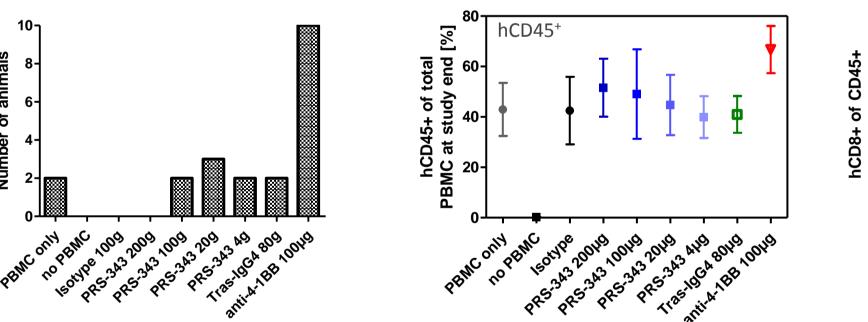



Figure 7. Phenotyping of tumors after study end by immunohistochemistry. Sections of formalinfixed and paraffin-embedded tumors were stained for human CD45, CD3, CD4 and CD8. The frequency of marker positive cells was quantified by dedicated software. The data shows that PRS-343 induces an increase in the frequency of human CD8+ cells in the tumor compared to controls. H&E staining was also performed.

Safety in humanized mouse model: PRS-343 avoids CD8+ T_{eff} expansion in periphery unlike 4-1BB mAb

- Anti-4-1BB mAb treatment led to accelerated graft-versus-host disease with significantly increased mortality compared to control and PRS-343 groups on day 20
- PBMC phenotyping results indicate that increased mortality induced by benchmark anti-4-1BB mAb is caused by strongly increased expansion of CD8+ human effector T cells in anti-4-1BB group compared to control or PRS-343 groups

PBMC phenotyping at end point Mortality at study end

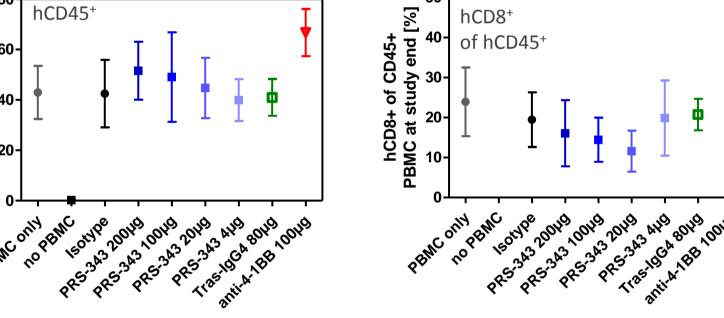


Figure 8. Mortality and PBMC phenotyping in humanized NOG mouse SK-OV-3 tumor model. (A) Mortality. Plotted values correspond to number of mice per group of ten that died spontaneously or needed to be sacrificed based on defined general condition criteria. (B) PBMC phenotyping. PBMC were isolated from mouse blood samples taken on day 20 after PBMC engraftment and analysed by multicolor FACS for human surface markers CD45, CD3 and CD8. PBMC from surviving animals of the group treated with anti-4-1BB benchmark mAb were phenotyped on day 17.

Summary

- PRS-343 is a 4-1BB/HER2 bispecific based on the genetic fusion of a high-affinity 4-1BB-binding Anticalin and modified trastuzumab
- PRS-343 displays a differentiated profile when compared to a benchmark 4-1BB-targeting antibody
- Reporter assay: PRS-343 leads to 4-1BB activation in presence of HER2-positive tumor cells, but not in their absence
- Ex vivo: PRS-343 induces strong T cell activation via tumor target-dependent costimulatory T cell engagement
- In vivo: PRS-343 displays dual activity based on monospecific HER2-targeting and bispecific, tumor-localized costimulation of 4-1BB, leading to increased density of CD8+ cells in the tumor
- In vivo: PRS-343 avoids the systemic peripheral activation of CD8+ T cells observed with benchmark 4-1BB antibody, which supports a better safety profile
- PRS-343 path to clinic: IND-enabling activities are ongoing with an anticipated first-in-patient study planned for the first half of 2017

Parts of images on this poster based on material from Servier Medical Art under a Creative Commons Attribution 3.0 unported license.